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Abstract

ASALSAN is a new algorithm for computing three-way
DEDICOM, which is a linear algebra model for analyzing
intrinsically asymmetric relationships, such as trade among
nations or the exchange of emails among individuals, that
incorporates a third mode of the data, such as time. ASAL-
SAN is unique because it enables computing the three-way
DEDICOM model on large, sparse data. A nonnegative ver-
sion of ASALSAN is described as well. When we apply these
techniques to adjacency arrays arising from directed graphs
with edges labeled by time, we obtain a smaller graph on la-
tent semantic dimensions and gain additional information
about their changing relationships over time. We demon-
strate these techniques on international trade data and the
Enron email corpus to uncover latent components and their
transient behavior. The mixture of roles assigned to indi-
viduals by ASALSAN showed strong correspondence with
known job classifications and revealed the patterns of com-
munication between these roles. Changes in the communi-
cation pattern over time, e.g., between top executives and
the legal department, were also apparent in the solutions.

1 Introduction

Often it is useful to distill a large amount of data down to
a manageable size to facilitate interpretation, and our goal is
to do this by uncovering latent profiles and their asymmetric
interrelationships. Existing data-analytic models and meth-
ods do not generally let one seek out and describe patterns
of asymmetric relationships in a dataset. This paper intro-
duces ASALSAN, a new algorithm for computing DEDI-
COM (DEcomposition into DIrectional COMponents) [17]
to provide information on latent components in data and the
pattern of asymmetric (i.e., directed) relationships among

∗This research was sponsored by the United States Department of En-
ergy and by Sandia National Laboratory, a multiprogram laboratory oper-
ated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE–AC04–94AL85000.

these components.
In this paper, we consider three-way DEDICOM for in-

terpreting directed semantic graphs (i.e., graphs with la-
beled edges) arising from international trade data and email
communications at Enron. Two contributions of this paper
are that we provide a new algorithm to compute three-way
DEDICOM for large-scale data, and we also present a non-
negative version of ASALSAN.

In the general case, consider a directed graph with n ver-
tices whose square adjacency matrix X contains a nonzero
entry xij for each edge (i, j). The two-way DEDICOM
model applied to X is an approximation

X ≈ ARAT, (1)

where A ∈ R
n×p is a matrix of loadings or “weights” for

the n vertices on p < n dimensions and R ∈ R
p×p is a

matrix that captures the asymmetric relationships on these
latent dimensions of A; see Figure 1.
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Figure 1. Two-way DEDICOM model.

The DEDICOM model can be extended to three-way
data, and here we use time as the third mode. If our graph
has m discrete time edge labels, then we can construct an
adjacency matrix Xk for each edge type, k = 1 . . . m, and
store them as an array X ∈ R

n×n×m. The three-way DEDI-
COM model for X is

Xk ≈ ADkRDkAT for k = 1, . . . , m, (2)

where Xk is the kth adjacency matrix in X, A ∈ R
n×p

is a matrix of loadings, Dk is a diagonal matrix that gives
the weights of the columns of A for each level in the third
mode, and R ∈ R

p×p is the asymmetry matrix; see Fig-
ure 2. The matrix R captures the aggregate trends over time
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Figure 2. Three-way DEDICOM model.

and, when multiplied on the left and right by Dk, within a
particular time period as well. The array D is the collection
of matrices Dk. In variations of this model, the scaling ar-
ray D and/or loadings matrix A may be different on the left
and right of R.

A simplified interpretation of DEDICOM is that it takes
a large array and condenses the interrelationships into an
idealized summary in the R matrix. Rows of A correspond
to nodes (e.g., individual people in a social network) and
can have substantial weights in more than one of the latent
components, which can be regarded as roles. For exam-
ple, an employee might have characteristics that cause their
pattern of email exchanges to look like a mixture of two
different idealized roles, such as an executive and a lawyer.

To help uncover latent components and temporal patterns
in data, this paper seeks to analyze semantic graphs where
each edge is labeled by the time period. This representation
has also been called a time graph [28]. We arrange the data
in a three-way array such that each slice corresponds to an
adjacency matrix of a particular time period.

We present two applications. First, we study a small ex-
ample of international trade data. Then we investigate the
Enron email corpus that was made public by the U.S. Fed-
eral Energy Regulatory Commission (FERC) during its in-
vestigation of the Enron corporation.

The paper is organized as follows. In section 2, we dis-
cuss work connected with the Enron corpus and past re-
search on the DEDICOM models. In section 3, we present
the ASALSAN algorithm for computing three-way DEDI-
COM models. Section 4 describes our two applications, and
we end with conclusions in section 5.

2 Related work

We mention relevant work from the psychometrics com-
munity for further background on DEDICOM and multi-
way models. We also outline related work in social network
analysis, mostly pertaining to the Enron data.

2.1 DEDICOM and multi-way models

The DEDICOM family of models was first introduced in
[17]. One of the earliest applications of DEDICOM studied

the asymmetries in telephone calls among cities. Later, it
was developed as a tool for analyzing asymmetric relation-
ships that arise in marketing research [18].

There has been some research of the model and asso-
ciated applications [19] followed by a number of papers
analyzing algorithms for computing the DEDICOM model
[25], including variations such as constrained DEDICOM
[24, 33] and three-way DEDICOM [23]. Most of the ap-
plications of DEDICOM in the literature have focused on
two-way data, and there is very little research in the three-
way case. One of the first applications involving three-way
data provided asymmetric measures of world trade (import-
export matrices) among a set of nations considered over a
period of 10 years [20]. DEDICOM has never been applied
to large-scale sparse data.

The use of multi-way models is relatively new in the con-
text of data mining. Sun et al. [37, 38] use a method they
call “dynamic tensor analysis” to look for patterns in multi-
way data with a time dimension. In [1], various multiway
analyses of (user× key word× time) data are used to sepa-
rate different streams of conversation in chatroom data. Sun
et al. [39] apply a three-way Tucker decomposition [40] to
the analysis of (user × query term × web page) data in or-
der to personalize web search. In [27, 26] a PARAFAC de-
composition [16] (also known as CANDECOMP [8]) is ap-
plied to (web page×web page× anchor text) data, forming
a sparse, three-way array representing the web graph with
anchor-text-labeled edges. In text analysis, Bader, Berry,
and Browne [2] apply standard and nonnegative PARAFAC
to a term × author × time array of email messages to au-
tomatically detect conversations, including topics, partici-
pants, and temporal activity.

The history of tensor decompositions in general goes
back at least forty years [40, 16, 8], and they have been
used in increasing frequency in other domains, especially
chemometrics [36]. Early work on algebraic analysis of
asymmetric structure includes, e.g., [15, 10, 17], and sig-
nificant proposals continue to appear over time, including
very recently [31]. Unfortunately, space limitations have
forced us to restrict discussion to the most direct precursors
of our current work.

2.2 Social network analysis

Sarkar and Moore [34] proposed a method for the dy-
namic analysis of social networks. They embed an evolving
friendship graph in p dimensional space using multidimen-
sional scaling and allow entities to move in this space over
time.

Recently, there has been research analyzing the social
networks detectable in the Enron email corpus. Diesner
and Carley [13] show that the communication network was
denser, more centralized, and more connected during the



crisis than during normal times. Their analysis also shows
that during the crisis, communication among Enron’s em-
ployees was more likely to be exchanged between employ-
ees in different positions, except among the top executives,
who had apparently formed a tight clique.

Chapanond et al. [9] analyzed the Enron corpus for struc-
tures within the organization. They used graph theoretical
and spectral analysis techniques to identify communities.

McCallum et al. [30] proposed the Author-Recipient-
Topic (ART) model for social network analysis. ART is
a Bayesian network for social network analysis that builds
on Latent Dirichlet Allocation and the Author-Topic model.
They use ART on the email Enron corpus to learn discus-
sion topics based on the directed interactions and relation-
ships between people and their communications.

3 Models and algorithms

We use the following notation. Scalars are denoted by
lowercase letters, e.g., a. Vectors are denoted by boldface
lowercase letters, e.g., a. The ith entry of a is denoted by
ai. Matrices are denoted by boldface capital letters, e.g., A.
The jth column of A is denoted by aj and element (i, j) by
aij .

Multi-way arrays are denoted by boldface Euler script
letters, e.g., X. Element (i, j, k) of a three-way array X is
denoted by xijk, and the kth frontal slice of X is denoted
by Xk (i.e., a matrix formed by holding the last index of X

fixed at k).
The symbol ⊗ denotes the matrix Kronecker product,

and the symbol ∗ denotes the Hadamard (i.e., elementwise)
matrix product. The Frobenius norm of a matrix, ‖Y ‖F , is
the square root of the sum of squares of all its elements.

3.1 ASALSAN for three-way DEDICOM

Three-way DEDICOM is similar to the two-way model
(1) in that the asymmetry relationships are in a matrix R,
but in addition there are diagonal scaling matrices (repre-
sented as frontal slices of array D) on either side that apply
weights to the columns of A. In variations of this model, the
scaling arrays on the left and right of R may be different.

Three-way DEDICOM is a part of a broader family of
quasi-multilinear models called PARATUCK2 [21], which
can empirically determine a unique best fitting axis orien-
tation in A without the need for a separate factor rotation.
This corresponds to the way factor analysis is extended to
three ways by PARAFAC [16] and confers the same kind
of special uniqueness property. With a unique solution, the
factors are plausibly a valid description with greater reason
to believe that they have more explanatory meaning than a
rotated two-way solution, using, e.g., VARIMAX rotation
[22].

To fit the three-way DEDICOM model, one must solve
the following minimization problem

min
A,R,D

f(A,R,D) (3)

where

f(A,R,D) =
m∑

k=1

∥∥Xk −ADkRDkAT
∥∥2

F
(4)

and A is not required to be orthogonal. Because the A and
R matrices apply across all frontal slices of X, algorithms
are more complicated than for two-way DEDICOM.

There are few algorithms for solving (3); in addition,
these algorithms are not efficient with large, sparse arrays.
Kiers [23] has presented an alternating least squares (ALS)
algorithm for three-way DEDICOM. To update A, Kiers
minimizes (4) over the columns of A, updating each col-
umn as a separate ALS subproblem. Each subproblem to
compute one column of A involves a full eigendecomposi-
tion of a dense n × n matrix, which makes this procedure
prohibitively expensive for large, sparse X. To update D,
Kiers solves for each element of D with an ALS procedure.
R is estimated by a least-squares update, which we use in
our procedure.

Here we propose an alternating algorithm, which we call
ASALSAN (for Alternating Simultaneous Approximation,
Least Squares, and Newton), and adapt it for use on larger
applications using a compression technique. Our approach
for updating A and D is an improvement because it is ca-
pable of dealing with large, sparse arrays.

To begin, we either start with random initializations for
A and R and set Dk = I. Or we set Dk = I, initialize
A from an eigendecomposition of

∑m
k=1(Xk + XT

k ) and
use them to compute an initial R as below. Then we update
A,R, and D in an alternating fashion as follows.

1. Updating A: We write a model that approximately
solves for A on both the left and the right and for all
frontal slices of D simultaneously. We consider all
frontal slices of X by stacking the data side by side:

(
X1 XT

1 · · · Xm XT
m

)
=

A
(
D1RD1 D1RTD1 · · · DmRDm DmRTDm

)
(
I2m ⊗AT

)
. (5)

Here I2m is the identity matrix of size 2m × 2m. We
approximate this nonlinear problem as a linear least
squares problem by holding the A matrix on the right
constant and computing the least squares solution for
the A on the left using the method of normal equations,



which simplifies to

A←
[

m∑
k=1

(
XkADkRTDk + XT

kADkRDk

)]
[

m∑
k=1

(Bk + Ck)

]−1

(6)

where

Bk ≡ DkRDk(ATA)DkRTDk, (7)

Ck ≡ DkRTDk(ATA)DkRDk. (8)

This equation updates all columns of A simultane-
ously and avoids the costly eigendecomposition of
Kiers’ method. While the update for A is not guaran-
teed to decrease f(A,R,D), the approximation works
well in practice, especially close to a solution. We be-
lieve this is the case because the DEDICOM model
and its transpose are considered simultaneously in the
stacked representation of (5). Hence, its squared resid-
ual norm is equal to twice the value of f in (4). The
least squares update (6)–(8) is a good approximation
when A is not changing much, so it improves the resid-
ual norm of (5), and the new objective value f is at
least as good as before. In our experience, it decreased
f with every iteration except for the first when starting
from a random initial guess.

2. Updating R: We use the closed form solution for R
from Kiers [23]. It involves vectorizing X and R and
stacking them in a manner such that the objective func-
tion in (3) changes to

f(R) =

∥∥∥∥∥∥∥



Vec(X1)
...

Vec(Xm)


−




AD1 ⊗ AD1

...
ADm ⊗ ADm


Vec(R)

∥∥∥∥∥∥∥ .

Minimizing f(R) over Vec(R) is a multiple regression
problem, and its solution is

Vec(R) =

(
m∑

k=1

(DkATADk)⊗ (DkATADk)

)−1

m∑
k=1

Vec(DkATXkADk). (9)

Provided that the number of latent dimensions is not
large (specifically that p2 is not large), then this step for
updating R will suffice for large-scale data. Because
this solution for R minimizes (4) while holding A and
D constant, it decreases f(A,R,D).

3. Updating D: We improve upon the alternating, ele-
mentwise minimization of Kiers [23] by considering a
simultaneous, full-scale minimization with respect to
the diagonal elements for each slice Dk:

min
Dk

∥∥Xk −ADkRDkAT
∥∥2

F
. (10)

Because there are only p variables for each of the m
slices, Newton’s method applied to (10) is not expen-
sive and offers fast quadratic convergence. The gradi-
ent g and Hessian H of (10) are provided in an ear-
lier technical report of this work [4]. Extra conditions
are needed to ensure that the Newton step is a descent
direction, and we use a modified Cholesky decompo-
sition of H to find the matrix H + λI that is safely
positive definite for the Newton step calculation; see,
e.g., [12]. Non-negativity constraints on D are han-
dled easily in this framework.

By alternating over each slice Dk and holding A and
R constant, this solution for D decreases f .

The algorithm stops when the it ceases to make improve-
ments to f(A,R,D)

‖X ‖2
F

according to some threshold value or

when it reaches a maximum number of iterations. While
the update for A is not guaranteed to decrease (4), our ex-
perience has been that each cycle of updates for A,R, and
D always improved (4) and converged to a stable function
value.

ASALSAN was tested on synthetic data constructed to
contain known structure. Arrays of up to size 50 × 50 ×
45 were constructed using p = 2 to 6 latent components
in A. An asymmetric R matrix and diagonal Dk matrices
were generated randomly to relate the patterns. When these
X arrays were analyzed from a number of random starting
positions, the global optimum was found among a number
of minimizers. The global optimum always revealed the
original patterns used to create the data, up to permutation
of column order and multiplication of columns by scaling
constants.

Note that the accurate recovery of built-in structure oc-
curred without rotation, and was more exact than would
typically be obtained by rotation methods. This is because
the three-way solution is essentially fully identified with-
out side conditions, i.e., is “essentially unique” [21]. Thus,
when the systematic structure in the data is reasonably well
approximated by the DEDICOM model and the compo-
nents are adequately distinct (e.g., not collinear in either
A or D), the uniqueness property increases the probabil-
ity of correspondence between the recovered patterns and
the original empirical source patterns.

When dealing with large arrays, ASALSAN uses a com-
pression technique. The steps for updating R and D can be
expensive if n is large. However, we may simplify the com-
plexity by projecting the data in X onto a basis of A and



working in this space. Specifically, we find an orthonormal
basis Q ∈ R

n×p of matrix A using, e.g., a compact QR
decomposition,

A = QÃ, (11)

where Ã is upper triangular. Then we use Q to project X

onto the basis of A. By the orthogonality of Q, the mini-
mization problem of (10) is the same as

min
Dk

∥∥∥QTXkQ− ÃDkRDkÃT
∥∥∥2

F
, (12)

except that QTXkQ and Ã are both of size p × p. We use
these smaller matrices in place of Xk and A, respectively,
in the updates of both R and D in (9) and (10) above.

The dominant costs of ASALSAN per iteration are lin-
ear in the number of nonzeros of Xk and/or O(p2n) and
come from the following steps: ATA, QR factorization of
A, XkART, XT

kAR, and QTXkQ. In contrast, the dom-
inant costs in Kiers’ ALS algorithm [23] come from up-
dating A with p diagonalizations of a dense n × n matrix,
costing O(pn3).

3.2 Nonnegative ASALSAN

Because we often deal with nonnegative data in X, it
sometimes helps to examine decompositions that retain the
nonnegative characteristics of the original data. So we have
modified ASALSAN to compute a three-way DEDICOM
model with non-negativity constraints on A, R, and D.
We call this algorithm NN-ASALSAN, for “nonnegative”
ASALSAN. Modifications to the updates of both A and R
are made as follows: we replace the least squares solution
with the multiplicative update introduced in [29] as imple-
mented in [2]. Specifically, we modify the step to solve for
the A appearing on the left in (5):

aic ← aic

[∑m
k=1

(
XkADkRTDk + XT

kADkRDk

)]
ic

[A
∑m

k=1(Bk + Ck)]ic + ε
.

where Bk and Ck are the same as in (7)-(8) above and ε is
a small number like 10−9. The solution for R is given by:

Vec(R)i ←
Vec(R)i

[∑m
k=1 Vec(DkATXkADk)

]
i

[
∑m

k=1(DkATADk)⊗ (DkATADk)Vec(R)]
i
+ ε

.

We used the procedure for updating D as above, using the
same non-negativity constraints.

An algorithm for a nonnegative two-way DEDICOM
model follows directly from NN-ASALSAN when one con-
siders a matrix X as an array X having a single slice
(m = 1) and the D array is just the identity matrix.

Table 1. Time in seconds per iteration (aver-
age number of iterations) on both data sets.

Algorithm World trade Enron
ASALSAN 0.069 (50) 0.85 (184)
NN-ASALSAN 0.083 (47) 1.0 (74)
Kiers [23] 0.022 (67) 22.3 (400+)

4 Experimental results

We consider two applications: a small example using
the international trade data used previously in [20] and the
larger email graph of the Enron corporation that was made
public during the federal investigation.

ASALSAN was written in MATLAB, using the Tensor
Toolbox [5, 6, 7], and Kiers’ algorithm [23] was compiled
Pascal code obtained from the author. All tests were per-
formed on a dual 3GHz Pentium Xeon desktop computer
with 2GB of RAM.

Table 1 shows the timings per iteration and average num-
ber of iterations to satisfy a tolerance of 10−5 (World trade)
or 10−7 (Enron) in the change of fit for the three algorithms
(using the same stopping criteria). We suspect the perfor-
mance gap on the world trade example is due to more over-
head in our MATLAB code relative to Kiers’ compiled ex-
ecutable. Due to the poor asymptotic scalability of Kiers’
algorithm on the larger Enron data, its running time is much
slower than ASALSAN. Processing larger data sets, the dis-
crepancy will grow even larger.

A practice in some applications of DEDICOM is to ig-
nore the diagonal entries of each Xk in the minimization
of (3). For both applications, this makes sense because
we wish to ignore self-loops (i.e., no self-trade or sending
email to yourself). We use an imputation technique of esti-
mating the diagonal values from the current approximation
ADkRDkAT at each iteration and including them in Xk.

4.1 World trade

For a simple algorithmic comparison, we tested the in-
ternational trade data of [20]. The data consists of im-
port/export data among 18 nations in Europe, North Amer-
ica, and the Pacific Rim from 1981 to 1990. A semantic
graph of this data corresponds to a dense adjacency array X

of size 18× 18× 10.
We computed a three component (p = 3) model using

ASALSAN and Kiers’ algorithm, and the same minimizers
may be found among the results of both algorithms. We also
used NN-ASALSAN to compute a new fully-nonnegative
version of the DEDICOM model (A,R,D ≥ 0). Because
the nonnegative results are more easily interpreted and are
new, we report just these results.



#1 #2 #3
#1 North America 4589 187 178
#2 Europe 126 896 89
#3 Japan 60 168 37
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Figure 3. World trade: R matrix from NN-
ASALSAN and associated graph showing ag-
gregate trade patterns.

The A matrix identifies nations that tend to have the
same patterns of trade. In our analysis, the three latent di-
mensions correspond mostly to geographical regions. The
first component identifies North American countries, dom-
inated by the US and Canada. The second component con-
tains the European countries lead by Germany, France, the
Netherlands, Italy, Belgium, and the UK. The third com-
ponent is dominated by Japan but also includes small par-
ticipation from the UK and Italy. Given world geography
and modes of shipment, these three latent groupings make
sense.

The aggregate trade patterns over the ten years among
these three regions is summarized in the R matrix and its
corresponding directed graph in Figure 3. From the self-
loops, we can see a large amount of trade within North
America (between the US and Canada) and within Europe.
Trade imbalances are also evident by the asymmetry of R.
For example, during this time period, Japan exports more to
Europe than it imports from Europe.

The scales in D indicate the strength of each region’s
world commerce over time. Figure 4 shows these scales
over the ten years. All curves are trending up due to eco-
nomic expansion during this time. Of particular interest is
Japan’s rapidly ascending curve, which we believe is due to
its economic expansion following the recession in the early
1980’s.

4.2 Enron email

The whole Enron email collection is available online
[11] and contains 517,431 emails stored in the mail directo-
ries of 150 users. We use a smaller graph of the Enron email
corpus prepared by Priebe et al. [32] that consists of mes-
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Figure 4. Scales in D for trade regions indi-
cate the level of commerce over time.

sages solely among 184 Enron email addresses. We con-
sidered messages only in the interval 13-Nov-1998 through
21-Jun-2002, which resulted in an email graph of 34,427
messages over 44 months. Our final graph corresponds to a
sparse adjacency array X of size 184× 184× 44 with 9838
nonzeros. We scaled the nonzeros entries by log2(w) + 1,
where w is the number of messages. This simple weighting
reduces the biasing from prolific emailers; other weightings
produced similar results.

An obvious difficulty in dealing with the Enron corpus
is the lack of information regarding the former employees.
Without access to a corporate directory or organizational
chart at Enron at the time of these emails, it is difficult to
ascertain the validity of our results. Other researchers using
the Enron corpus have had this same problem, and infor-
mation on some participants has been collected and made
available.

The Priebe data set [32] provided partial information on
the 184 employees of the small Enron network, which ap-
pears to be based largely on information collected by Shetty
and Adibi [35]. It provides most employees’ position and
business unit. To facilitate a better analysis of our results,
we collected extra information on the participants from the
email messages themselves and found some relevant infor-
mation posted on the FERC website [14]. We searched for
corroborating information of the preexisting data or for new
identification information, such as title, business unit, or
manager to help assess our results.

We labeled each of the 184 individuals according to
the following five categories: executive (56), legal (15),
pipeline (13), energy trader (29), and unaffiliated (71). Ex-
ecutives were considered as director level and higher. Legal
employees were from the legal department in Enron North
America (ENA). Pipeline employees were mainly those
from the Transwestern Pipeline Company, a division of En-
ron Transportation Services (ETS). Energy traders were
those individuals who traded gas or electricity in energy
markets. The unaffiliated category were those employees
for whom we had very little information and were largely
unknown. The executive label took precedence over any
of the others (e.g., the VP of Legal would be an “execu-
tive”). We will see that ASALSAN is able to align employ-



−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
J. Dasovich − Employee, Government Relationship Executive

J. Steffes − VP, Government Affairs

R. Shapiro − VP, Regulatory Affairs
S. Kean − VP, Chief of Staff

R. Sanders − VP, Enron Wholesale Services

T. Jones
Financial Trading Group
ENA Legal

S. Shackleton
ENA Legal

M. Taylor
Manager
Financial Trading Group
ENA Legal

Column 1

C
ol

um
n 

2

 

 

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
K. Watson
Transwestern Pipeline Company (ETS)

M. Lokay
Admin. Asst.
Transwestern Pipeline Company (ETS)

L. Donoho − Employee, Transwestern Pipeline Company (ETS)

M. McConnell − Employee, Transwestern Pipeline Company (ETS)

L. Blair − Employee, Northern Natural Gas Pipeline (ETS)

L. Kitchen
President
Enron Online

J. Lavorato
CEO, Enron America

Column 3

C
ol

um
n 

4

 

 
Unaffiliated
Executive
Legal (ENA)
Pipeline (ETS)
Energy Trader

Figure 5. Scatter plots of the first and sec-
ond columns of A (top) and third and fourth
columns of A (bottom) .

ees according to their business unit and identify many of
these dual roles. Next we summarize our findings of using
ASALSAN and NN-ASALSAN to analyze the Enron email
network.

We computed a four-component (p = 4) decomposi-
tion of the adjacency array X using ASALSAN. This is
a difficult optimization problem, and we chose the smallest
minimizer from among 40 runs starting from random ini-
tializations. The relative norm of the difference was 0.885
(excluding diagonal).

Figure 5 plots the four columns of the A matrix. The
employees tend to line up on a single latent dimension cor-
responding to their role. This is due to the fact that each la-
tent dimension in three-way DEDICOM is associated with
a profile over time, so the roles it identifies tend to be more
specific with less dual participation than is found in two-
way DEDICOM [4].

The first column is the legal role, and the second column
identifies executives who deal with government and regu-

#1 #2 #3 #4
#1 (Legal) 440.2 13.4 -7.9 -5.6
#2 (Exec/Gov’t Affairs) 13.8 286.7 157.8 0.4
#3 (Executive) -23.6 93.5 211.6 -4.8
#4 (Pipeline) -4.8 -5.9 -6.5 172.4
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Figure 6. Enron corpus: R matrix and asso-
ciated graph showing aggregate communica-
tion patterns.

latory affairs. The third role is the top executives, and the
fourth role is the pipeline employees. The energy traders
are missing from this analysis but are included partially in
the third role (and higher dimensional solutions; see below).
The government affairs node is a subgroup of the executive
role and has different temporal communications, which is
why it is identified as a separate role.

The aggregate communication patterns over the 44
months among these four roles is summarized in the R
matrix and its corresponding directed graph in Figure 6.
Most of the communication is within each role as evidenced
by the large magnitude diagonal elements and small off-
diagonal elements. There is some communication between
the government/regulatory affairs executives and other se-
nior executives (roles 2 and 3, respectively). However, the
communication is substantially asymmetric in that the r2,3

element is larger than r3,2. This indicates that the top exec-
utives were mostly recipients of messages while the govern-
ment/regulatory affairs executives were senders. The small
off-diagonal elements in the fourth row and column indicate
that the pipeline employees interacted almost exclusively
with themselves. We interpret the negative off-diagonal el-
ements as having less communication than one would ex-
pect from a typical null hypothesis, which suggests that the
executive role avoided communicating with the legal role.

The scales in D indicate the strength of each role’s par-
ticipation in the communication over time. Figure 7 shows
these scales of the four-component model. It is here where
one sees the temporal nature of each cluster’s communica-
tions. The legal department has relatively sustained com-
munication over the whole time period as shown by the
broad hump in the plot. On the other hand, the govern-
ment affairs executives have frequent communications from
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Figure 8. Graphs of DkRDk showing commu-
nication patterns for k = October 2000 (pre-
crisis, left) and k = October 2001 (during cri-
sis, right).

October 2000 through October 2001, after which there is a
drop-off. The top executives and pipeline employees have
similar communications pattern, where they have frequent
communications after October 2001. We believe these re-
sults are consistent with findings in [13].

To see the communication patterns within a particular
year, we multiply R on the left and right by the slices of
array D. For example, Figure 8 shows the communication
patterns among the four roles in A in October, 2000 and
October, 2001. These two time periods were analyzed in
[13] and correspond to times before and during the crisis
at Enron. We see that the intra-role communication in the
government affairs and legal roles decreases over this time
period while it increases in the executive and pipeline roles,
precisely those being investigated.

Here, we comment on the results for different values of
p. Proceeding from lower- to higher-component solutions,
ASALSAN partitions the employees into increasing spe-
cific roles, so we can establish a loose hierarchical clus-
tering of the employees. For example, the first four di-
mensional solutions are represented by the four-component
model described above: The 2-component model groups
the employees largely from the legal department and those
executives dealing with government and regulatory affairs.
The 3-component model adds another role of top execu-
tives, and the 4-component model includes those from the
pipeline business as a fourth role. The 5-component model
includes another executive role that is similar to the govern-
ment and regulatory affairs role but has a different temporal
communication pattern. The 6-component model adds the
energy traders.

Next, we computed a four-component (p = 4) nonneg-
ative decomposition (A,R,D ≥ 0) of the adjacency array

#1 #2 #3 #4
#1 (Legal) 437.4 0 1.7 0
#2 (Exec/Gov’t Affairs) 0 269.7 57.9 3.6
#3 (Executive) 0 0 181.0 0
#4 (Pipeline) 0 0 0 171.9
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Figure 9. Enron corpus: R matrix from NN-
ASALSAN and associated graph showing ag-
gregate communication patterns.

X using NN-ASALSAN. We chose the smallest minimizer
from among 40 runs from random starting points, and the
relative residual norm was 0.885 (excluding diagonal).

Qualitatively, the scatter plots of the columns of A are
similar to Figure 5 and are not shown here. The scales in D,
indicating the strength of participation of each role’s com-
munication over time, are also nearly identical to Figure 7.

The benefit of the non-negativity constraints is that the R
matrix is more easily interpreted. Figure 9 shows the R ma-
trix and its corresponding graph. It is clear from this graph
that communication generally “flows up” the management
chain to the top executives. Also, the government affairs
executives are passing information to the pipeline employ-
ees. Higher component solutions of the nonnegative model
yields similar roles as identified by ASALSAN.

According to the DEDICOM model, the ith row of A
can be considered as scores of how strongly the ith em-
ployee is associated with each role. In other words, aij is
the strength of the association between employee i and role
j. Next we quantify the accuracy of these assignments.

We had independently labeled the four latent roles in
A as executive, legal, trading, and pipeline. For each em-
ployee for which we obtained a true label (we did not con-
sider the “unaffiliated” employees), Table 2 compares this
label against the prediction made by ASALSAN. It should
be noted that ASALSAN identified a “government affairs”
role that did not directly correspond to the job titles we
had. Since there was no “trader” role identified, we omit
those employees from the tables for the three-way models.
We computed the percentage of each true job type that was
correctly predicted by the top one or two predictions from
ASALSAN.

Note that while several employees had dual roles, we had
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Figure 7. Scales in D indicate the strength of participation of each role’s communication over time.

Table 2. Percent of employees matching their
actual business unit and job title label based
on their primary and primary/secondary la-
tent role assignments.

True label Highest score 1st and 2nd highest score
ASALSAN
Executive 75% 95%
Legal 73% 80%
Pipeline 62% 77%
Overall 73% 89%
NN-ASALSAN
Executive 73% 93%
Legal 73% 87%
Pipeline 62% 85%
Overall 71% 90%

arbitrarily labeled VPs and directors as “executives” irre-
spective of their business unit. Of course, it is then the case
that some executives instead load on their business unit. For
example, ASALSAN may identify the VP of Legal in a “le-
gal” role, but our label is “executive.” However, in most
cases, the other role (e.g., “executive”) is then picked up as
the next highest scoring role, resulting in an overall clas-
sification of 89–90% if the two highest scoring roles are
considered.

5 Conclusions and discussion

ASALSAN is a new algorithm for fitting a three-way
DEDICOM model (optionally with non-negativity con-
straints) that scales to large, sparse data. We have shown
some of its capabilities in analyzing temporal data in inter-
national trade and communications. The matrix R captures
the asymmetry of the original data, offering an idealized
version of a directed graph involving the latent components
identified in A, and the array D describes the associated
temporal patterns.

ASALSAN may derive useful information from any di-
rected graph. With its capacity to handle large-scale data,

new applications include analyzing web traffic between
servers over time or a web/citation graph over time.

We suggest two extensions to ASALSAN that we intend
to pursue. First, constrained DEDICOM [24] is an exten-
sion of DEDICOM that has been suggested in the 1990’s
and pursued more recently [33]. The idea is to constrain
the A factors themselves so that the columns of A lie in
a prescribed column space to include domain knowledge
or incorporate human understanding into the problem. For
example, in the email graph, one might want to impose a
constraint on the first column of A so that it contains only
the top executives. Second, DEDICOM has been applied to
skew-symmetric data [19] and has yielded additional insight
in asymmetric problems that we believe would be useful in
large-scale applications.
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